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Abstract—The Internet of Things (IoT) is gathering paces
in the new era of Industry 4.0, and the Digital Twin (DT)
technology bridges the gap between the bursting amounts of data
generated by IoT devices and the user requirements for real-
time data processing. DT services maintain living digital models
of physical objects, and a DT network enables comprehensive
service provisioning with the global knowledge of a group of DTs.
On the other hand, exposing serverless computing in network
edges, the recent advances in Serverless Edge Computing (SEC)
introduce new inspirations to the DT landscape that ensure fine-
grained resource management and low network-wide delay of
DT services. However, social relationships among IoT devices
and DT data privacy impact the orchestration of DTs. In this
paper, we design a differential privacy-based federated learning
framework to build a DT network for DT services in response to
user DT service requests in SEC, thereby enhancing the Quality
of Services (QoS). To this end, we first formulate a novel social-
aware problem for placing DTs in an SEC network, and show
its NP-hardness. We then provide an Integer Linear Program
(ILP) solution to the problem when the problem size is small;
otherwise, we design an approximation algorithm with a provable
approximation ratio. We finally evaluate the algorithm perfor-
mance through simulations. Simulation results demonstrate the
proposed algorithm is promising, which improves by no less than
21.1% of the performance of benchmarks.

Index Terms—Digital Twin (DT) placement, serverless edge
computing, social-aware DT relationships, DT-enabled service
provisioning, approximation algorithm, federated learning, dif-
ferential privacy, and resource allocation.

I. INTRODUCTION

Propelled by the increasing scale of digitization, the
Internet of Things (IoT) is opening the door to a smarter
world with its capacity to sense data in physical environments.
Meanwhile, Digital Twins (DTs) are being rolled out as virtual
representations of physical objects to reflect their real-time
statuses, augmenting the performance of a surging number of
IoT devices [1]. DTs are data-intensive, and their continuous
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Fig. 1. An illustrative example of a DT network for a request in an
SEC network where each Access Point (AP) has a co-located cloudlet.
Each IoT device has a Primary DT (P DT) deployed in a cloudlet, i.e.,
P DT1, P DT2, P DT3 and P DT4 of IoT devices n1, n2, n3 and n4

are deployed in cloudlets v1, v6, v3, and v5, respectively. IoT device n1 issues
a request and selects n2 and n4 for DT data, through instantiating containers
to implement their Sub-DTs (S DTs) with the needed features, S DT2 and
S DT4, in cloudlets v2 and v6, respectively. Thus, the DT network of the
request consists of P DT1, S DT2 and S DT4, where P DT1 transmits
its trained global model to S DT2 and S DT4 for their local training. The
trained models of S DT2 and S DT4 are then sent back to P DT1 for
aggregation, by a differential privacy-based federated learning framework.

synchronizations with physical objects require real-time data
analytics [19].

Different from traditional cloud computing with signifi-
cant service delays, Mobile Edge Computing (MEC) deploys
cloudlets (edge servers) near users with the nature of ubiq-
uitousness and low network delay to ensure fast responses
and timely DT maintenance [12], [25]. Albeit with these
benefits of MEC, it raises issues about resource scarcity and
inefficient resource management [11]. Taking advantages of
the container technology, serverless computing provides fine-
grained resource allocation with high elasticity for MEC [23].
In this context, Serverless Edge Computing (SEC) integrates
MEC and serverless computing, and has emerged as a crucial
research area and endows DTs with new vigors [18].



With the accelerated penetration of DTs, the DT net-
work paradigm is expected to deliver comprehensive DT
services to users, through grouping a collection of DTs and
analyzing their global information [19]. However, building
a DT network confronts significant challenges, such as the
rising concerns on privacy and security, and frequent network
communications. This highlights the importance of distributed
learning architectures, among which the federated learning
framework is envisioned as a key paradigm for IoT and 6G
networking, where models are trained locally and the model
parameters, rather than raw data, are uploaded to a server for
aggregation [10]. Nevertheless, federated learning still suffers
from potential leakages of private data, through examining the
differences of model parameters that are uploaded via local
devices. To this end, a privacy-preserving method - differential
privacy, which prevents data leakage through adding artificial
noise, has been widely adopted in practice [21].

Recent research results demonstrate that the emerging
notion of Social IoT (SIoT) relationships, such as ownership
and co-location, among IoT devices impact the orchestration
of DTs [4], [5]. On behalf of their physical counterparts,
DTs keep traces of social relationships of IoT devices, which
provides further insights into how to build DT networks. E.g.,
when two IoT devices are owned by the same entity, their
DTs may trust each other closely, and the added noise by
the differential privacy policy can be set as a small value [6].
Also, when two devices are in the same area with frequent
interactions, their DT data are important to each other.

In this paper, we study social-aware DT placements for
admitting service requests in a DT-enabled SEC network,
where each request is based on a DT network. As illustrated
in Fig. 1, each IoT device has a Primary DT (P DT) placed
in a cloudlet, containing all features of the IoT device through
monitoring its state continuously. An IoT device may issue a
request for the DT data of other IoT devices, i.e., a request
has a candidate set of IoT devices as its potential participants
through inter-twin communication [20], e.g., the driving sim-
ulation of a vehicle may need the DT data of other vehicles
in the same area. Each selected IoT device then extracts the
needed features from its P DT to establish a Sub-DT (S DT)
to participate in the execution of the request, where each S DT
is deployed in a container. E.g., a traffic monitoring request
prefers the features, such as locations and driving behaviors
of vehicles. Namely, the DT network of a request consists of
the P DT of the IoT device issuing the request and the S DTs
of selected IoT devices for providing DT data.

The key differences between the P DT and one S DT
of an IoT device lie in that the P DT contains all features
of the IoT device and is implemented by a network function
for a long lifetime. In contrast, an S DT is implemented by a
short-lived container that contains partial features of the IoT
device, which means an S DT requires much less resources
compared with its P DT. The model of an S DT built on the
required features is trained to meet the requirements of the
request, e.g., considering a request to simulate the driving of
a vehicle in an area, the driving behaviors of other vehicles

are needed, which can be simulated by their S DTs.
To protect DT data privacy, each request is executed

by adopting a differential privacy-based federated learning
framework, i.e., the P DT of an IoT device issuing the request
first uses itself to train a global model and then transmits the
trained global model to the S DT of each selected IoT device.
Each of such an S DT performs local training and sends the
updated model to the P DT for aggregation with an amount of
allocated privacy budget, depending on the social relationships
(e.g., trust) among IoT devices [6]. Each service request has a
global privacy budget to bound its privacy leakage [16], and
the total allocated privacy budget on S DTs of the request
should not exceed the global privacy budget.

We measure the Quality of Service (QoS) for admitting
a request, i.e., its utility gain, based on the importance of the
DT data of each chosen IoT device, and we model such data
importance based on the interaction intensiveness among IoT
devices, which is also indicated by their social relationships.

Providing social-aware DT services in an SEC network
poses several challenges. First, how to select appropriate IoT
devices for providing DT data demanded by each service re-
quest, subject to a given global privacy budget on the request?
Second, how to deploy S DTs of the selected IoT devices
in cloudlets for each request in an SEC network, considering
limited resource capacities on cloudlets? Finally, how to cope
with DT network-enabled request admissions through S DT
deployments to maximize the total utility of admitted requests,
by exploring the social-aware DT relationships?

The novelty of the study of this paper lies in exploring
the social-awareness among DTs, and leveraging this relation-
ship for DT-assisted service provisioning in SEC. To provide
privacy protection on DT data, a differential privacy-based
federated learning framework is developed to respond to each
service request. Built upon the proposed framework, a novel
optimization problem for placing S DTs in an SEC network is
formulated, and an approximation algorithm for the problem
with the guaranteed performance is devised.

The main contributions of this paper are as follows.
• We formulate a novel social-aware S DT placement prob-

lem for DT-enabled service provisioning, considering data
privacy, and illustrate the NP-hardness of the problem.

• We propose an Integer Linear Program (ILP) solution for
the problem when the problem size is small, and devise an
approximation algorithm for the problem with a provable
approximation ratio.

• We evaluate the algorithm performance by simulations.
The results demonstrate that the proposed approximation
algorithm is promising, which improves the performance
of the benchmarks by no less than 21.1%.
The remainder of the paper is arranged as follows.

Section II surveys related works on providing social-aware
DT services in SEC. Section III shows the system model
and problem definition with an ILP formulation. Section IV
proposes an approximation algorithm for the social-aware
S DT placement problem. Section V evaluates the algorithm
performance, and Section VI concludes the paper.



II. RELATED WORK

Serverless computing endows network service provision-
ing with great elasticity, which has been extended to edge
environments, and Serverless Edge Computing (SEC) is re-
ceiving a surge of attention recently [18], [19], [23], [24].
Shang et al. [18] formulated a problem for data flow and
container placement in SEC networks, and introduced an
online algorithm to mitigate both operational costs and service
delays. Xu et al. [23] paid attention to reducing the age of big
data query results. They developed an approximate solution
for query admissions and an online learning approach for
dynamic query admissions in SEC. However, none of the
aforementioned works considered DT services in an SEC.

In recent years, DT techniques applied in edge environ-
ments have been extensively investigated [12]–[15], [19], [20],
[25]. Li et al. [13] integrated object mobility in edge-cloud
networks to dynamically deploy DTs in edge servers, while
proposing online and approximation algorithms to provide
users access to fresh DT data. Yao et al. [25] presented an
architecture for scheduling tasks and caching services in a
DT edge network. They delivered a graph attention-based
algorithm to improve the QoS. A few recent studies take social
relationships into consideration for providing DT services [4],
[5], [26]. Chukhno et al. [4] focused on the optimal social-
aware deployment of DTs in MEC, and provided an efficient
solution to minimize the communication delay (i) between ob-
jects and their DTs; and (ii) among DTs of friend IoT devices.
Chukhno et al. [5] also examined the dynamic placements
of social-aware DTs, and provided a heuristic algorithm to
mitigate the communication delay. Zhao et al. [26] explored
the social relationships among vehicles in DT-based vehicle
edge computing, and proposed intelligent partial offloading
strategies to optimize the system performance. However, none
of the aforementioned works adopted federated learning to
protect privacy in DT service provisioning.

Federated learning allays user privacy worries and offers
a promising distributed machine learning architecture for en-
abling DT services [1], [10]. Abdulrahman et al. [1] leveraged
federated learning techniques to build a shared DT model, and
designed a trust-based client clustering method, incorporat-
ing the social relationship among clients. They proposed an
intelligent framework to optimize communication costs and
computing resources. Jiang et al. [10] exploited blockchain
and cooperative federated learning to build DTs with flexi-
bility and security. They designed an auction-based scheme
to maximize social welfare in edge networks. However, none
of the aforementioned works considered social relationships
among IoT devices to determine the allocated privacy budgets
and to determine the importance of the collected DT data.

In contrast to the aforementioned works, in this paper
we study social-aware DT placements in an SEC network
for DT-assisted service provisioning. We develop a differential
privacy-based federated learning framework to construct a DT
network for each request admission, and devise an efficient
approximation algorithm for the social-aware DT placement

problems with a provable approximation ratio.

III. PRELIMINARIES

A. System model

Consider an SEC network G = (V,E), consisting of a set
V of Access Points (APs) and a set E of links interconnecting
APs. Each AP has a co-located cloudlet, and we use notion
v ∈ V to indicate a cloudlet or its co-located AP. Let Mv

be the available memory resource in a cloudlet v ∈ V . The
system model is illustrated in Fig. 1.

Denote by ln1,n2
the trust of IoT device n1 to IoT device

n2 with 0 ≤ ln1,n2 ≤ 1 [6]. A larger value of ln1,n2 indicates
device n1 trusts on device n2 with higher fidelity. Denote by
λn1,n2

the interaction intensiveness of IoT device n1 with IoT
device n2, with 0 ≤ λn1,n2

≤ 1 [5], where a larger λn1,n2

indicates that IoT device n1 interacts with n2 more frequently,
i.e., the DT data of IoT device n2 is more important for n1.

B. A federated learning framework for constructing a DT
network for each request

Now we introduce a differential privacy-based federated
learning framework for constructing a DT network for each
request. Each IoT device n ∈ N has a Primary DT (P DT)
placed in a cloudlet vn ∈ V , which contains all features of IoT
device n through monitoring its state continuously. There is a
set R of DT service requests. Each request r ∈ R is issued by
an IoT device nr and executed by its P DT, which may need
the DT data of a candidate set of IoT devices Nr ⊆ N as
potential participants through inter-twin communication [20].

Given a request r, each selected IoT device n ∈ Nr

extracts the needed features from its P DT to establish a Sub-
DT (S DT), and each S DT is deployed in a container in the
SEC network. Note that for a given P DT, it can have multiple
S DTs with different S DTs having different features. The
demanded resource of a container is mainly the memory re-
source [24], according to serverless platforms [2], [3], because
the amount of data loaded to the memory is related to the
amount of memory assigned to the container [23]. Denote by
mr,n the amount of memory resource needed in a container
to deploy an S DT of IoT device n for request r.

Following the federated learning framework, each request
r can be implemented through building a DT network consist-
ing of the P DT of the IoT device nr issuing the request r
and the S DTs of the chosen candidate IoT devices in Nr.
Especially, the P DT of IoT device nr first trains a global
model and then transmits the trained global model to the
S DTs of all selected IoT devices. The S DTs then conduct
local training and transmit the updated model to the P DT
for aggregation. Because the data volume of an S DT of an
IoT device is much less than that of its P DT, adopting S DTs
can reduce the local training time of a request on the DT data,
thereby reducing the data traffic burden on the SEC network.

C. Differential Privacy and privacy budget constraint

The model of an S DT can be trained based on its
personal data, which, however, is likely to leak some of the DT



information. The differential privacy policy makes a commit-
ment to enabling secure model sharing by offering dependable
assurances on the data exposure of individuals [21].

Definition 1: ((ϵ, δ)-differential privacy [8]): An algo-
rithm F : D 7−→ Λ is (ϵ, δ)-differential privacy if for any
set Ω ⊆ Λ and for any two neighboring datasets D1 and D2,
they are only one sample difference, i.e., |D1| ≤ |D2| + 1 or
|D2| ≤ |D1| + 1, D1,D2 ⊆ D and vice versa, Pr[F (D1) ∈
Ω] ≤ eϵ · Pr[F (D2) ∈ Ω] + δ. where ϵ > 0 is the privacy
budget and indicates the upper bound of the degree of privacy
leakage. δ indicates the probability that the privacy leakage
exceeds the upper bound.

A smaller privacy budget ϵ assigned to one data indicates
that the data will receive greater privacy protection. In terms
of the DT data privacy issue, an S DT adopts the differential
privacy strategy through adding the Gaussian noise to model
parameters to avoid revealing the original data [21].

We assume that each request r ∈ R has a global privacy
budget Br to bound its privacy leakage [16]. The required
privacy protection level can be obtained based on social
relationships (trust) among IoT devices [22]. Following [6],
[7], the privacy budget for data communication from IoT
device n1 to IoT device n2 is calculated as follows.

ϵn1,n2
=

ln1,n2

ln1,n2
+ τ
· κ, (1)

where ln1,n2
is the value of the trust from IoT device n1 to

device n2 with 0 ≤ ln1,n2
≤ 1, τ is a constant with 0 ≤ τ ≤ 1

to avoid the denominator to be zero, and κ > 0 is a tuning
parameter to scale the allocated privacy budget.

The global privacy budget constraint for each request r is
as follows. Suppose that a request r issued by IoT device nr

is admitted. Then, it establishes the S DTs of each IoT device
in a set Nr with Nr ⊆ Nr ⊆ N , while the total privacy budget
allocated of request r is no more than Br, i.e.,∑

n∈Nr

ϵn,nr
≤ Br. (2)

D. The utility gain

Recall that IoT device nr issues a request r executed on
its P DT for the DT data from a candidate set of IoT devices
Nr ⊆ N as potential participants, and the utility gain of such
a request r depends on the importance of the DT data of each
chosen IoT device from the candidate set Nr. Then we define
the utility gain ur,n of selecting an IoT device n from Nr as

ur,n =
λnr,n∑

n′∈Nr
λnr,n′

, (3)

where λnr,n is the intensiveness that IoT device nr interacts
with IoT device n, with 0 ≤ λnr,n ≤ 1 [5], indicating the
importance of the DT data of IoT device n for nr.

E. Problem definition

Definition 2: Given an SEC network G = (V,E), a set
N of IoT devices, a set R of requests, each request r ∈ R
has a candidate set of IoT devices Nr for S DT deployment

with a given global privacy budget Br. The social-aware S DT
placement problem is to maximize the utility gain of the
requests, through deploying S DTs in G, subject to a given
global privacy budget and memory capacities on cloudlets.

Let xr,n,v be a binary variable, where xr,n,v = 1 presents
that the S DT of IoT device n is deployed in cloudlet v ∈ V
for request r, and xr,n,v = 0 otherwise. The ILP of the social-
aware S DT placement problem is formulated as follows.

Maximize
∑
r∈R

∑
n∈Nr

∑
v∈V

ur,n · xr,n,v, (4)

subject to:∑
r∈R

∑
n∈Nr

mr,n · xr,n,v ≤Mv, ∀v ∈ V (5)∑
n∈Nr

∑
v∈V

ϵn,nr · xr,n,v ≤ Br, ∀r ∈ R, (6)∑
v∈V

xr,n,v ≤ 1, ∀r ∈ R,∀n ∈ Nr (7)

xr,n,v ∈ {0, 1}, ∀r ∈ R, ∀n ∈ Nr, ∀v ∈ V, (8)

where Constraint (5) ensures the memory capacity on each
cloudlet. Constraint (6) ensures the global privacy budget on
each request by Eq. (2). Constraint (7) indicates that each
S DT is deployed in at most one cloudlet.

F. NP-hardness of the defined problem

Theorem 1: The social-aware S DT placement problem
for service provisioning in an SEC is NP-hard.

The NP-hardness of the social-aware S DT placement
problem can be shown through a polynomial reduction from
the generalized assignment problem, which is NP-hard [17].
The detailed proof is omitted due to space limitation.

IV. APPROXIMATION ALGORITHM FOR THE
SOCIAL-AWARE S DT PLACEMENT PROBLEM

In this section, we deal with the social-aware S DT
placement problem by proposing an approximation algorithm,
and its core idea is as follows. We first obtain a potential
solution S, i.e., a set of S DTs deployed in cloudlets, which
allows violations on memory capacities of cloudlets and global
privacy budgets on requests. We then partition set S into two
disjoint subsets S1 and S2 respectively, where the S DTs in
either S1 or S2 cause no violation on global privacy budgets of
requests. We choose one from S1 and S2 with a larger utility
gain and denote this set as S′. We further partition S′ into two
disjoint subsets S3 and S4 respectively, and either S3 or S4

causes no violations on memory capacities on cloudlets. We
finally choose one from S3 and S4 with a larger utility gain,
which serves as the final solution to the problem.

It is observed that the deployment of any S DT consumes
memory resource and a privacy budget. Referring to the
global privacy budget constraint (6), we define the privacy
consumption ratio σ(λl) of placing the lth S DT λl as follows.

σ(λl) =
ϵ(λl)

B(λl)
, (9)



where ϵ(λl) is the consumed privacy budget of λl by Eq. (1).
To guide the deployment of S DTs, we adopt a metric -

the ratio ρ(λl) for deploying the lth S DT λl, with

ρ(λl) =
u(λl)

m(λl) · σ(λl)
, (10)

where u(λl) is the utility of deploying ρ(λl) calculated by
Eq. (3), and m(λl) is the memory resource consumed by λl.

The approximation algorithm proceeds iteratively as fol-
lows. Let Λ be the set of all candidate S DTs of requests with
Λ = {λr,n | r ∈ R,n ∈ Nr}. The set of deployed S DTs is
S = ∅ initially. Denote by Sl−1 the set of the first l−1 S DTs
placed before placing the lth S DT, where Sl = Sl−1 ∪ {λl}.

In each iteration, we identify an S DT λr,n ∈ Λ\Sl−1

as λl with the largest ρ(λl) in Eq. (10), while updating Sl =
Sl−1∪{λl}. We partition S into two subsets S1 and S2 through
examining the privacy budget consumption of requests, and
determine at which cloudlet to deploy λl through examining
the memory resource consumption of cloudlets as follows.

Let Br(Sl) be the accumulative privacy budget consump-
tion of request r by deploying S DTs in Sl. For each identified
S DT λl, if the consumed privacy budget of request r by Sl is
greater than its privacy budget Br, i.e., Br(Sl) > Br, we put
λl into set S1; otherwise (Br(Sl) ≤ Br), we put λl into set S2.
Also, if Br(Sl) ≥ Br, we will no longer consider request r by
removing its rest S DTs from Λ, i.e., Λ = Λ\{λr,n | n ∈ Nr}.
S1 and S2 are disjoint and S = S1 ∪ S2.

We now identify a cloudlet for the deployment of λl.
Specifically, the candidate set of cloudlets is V = V ini-
tially. We then identify a cloudlet v ∈ V with the largest
residual memory resource for deploying λl. Let Mv(Sl) be
the accumulative memory resource consumption of cloudlet
v, via placing S DTs in Sl. For each identified S DT λl, if
the consumed memory resource of the assigned cloudlet of
λl after its deployment is greater than its capacity Mv , i.e.,
Mv(Sl) > Mv , we put λl into set S3. Also, if the consumed
memory resource of cloudlet vk is no less than its capacity
Mv after deploying S DT λl, i.e.,Mv(Sl) ≥Mv , we remove
cloudlet v from V with V ← V\{v}, i.e., the cloudlet is
removed from further consideration. It can be seen that S3 is
a set of S DTs which cause capacity violations on cloudlets,
and each cloudlet has at most one associated S DT in S3. This
procedure continues until either the set of to-be-considered
requests becomes empty (i.e., all requests run out of global
privacy budgets) or the set of to-be-considered cloudlets be-
comes empty (i.e., all cloudlets run out of resources).

Note that S has been partitioned into two sets S1 and
S2, and one of them with the larger utility is identified as S′.
Because S′ is a subset of S, an S DT in S3 may not cause
capacity violation on a cloudlet by S′ any more. We then
refine S3 as follows. We first update S3 = S3 ∩ S′. For each
S DT λl in S′, if the cloudlet in which λl is allocated has no
capacity violation by S′, we then remove λl from S3.

Let S4 = S′\S3, and S′ is now partitioned into two
disjoint sets S3 and S4 with S′ = S3 ∪ S4. We claim that
deploying S DTs in either S3 or S4 causes no violation on

Algorithm 1 Approximation algorithm for the social-aware
S DT placement problem
Input: An SEC network G = (V,E), and a set R of DT service requests.
Output: Maximize the utility gain of deploying S DTs in cloudlets.
1: S0 ← ∅; S1 ← ∅; S2 ← ∅; S3 ← ∅; S4 ← ∅;
2: V← V ; Λ← {λr,n | r ∈ R,n ∈ Nr}; l← 1;
3: while V ̸= ∅ or Λ\Sl−1 ̸= ∅ do
4: Identify an S DT λr,n ∈ Λ\Sl−1 as λl with the largest ρ(λl) in

Eq. (10); Sl ← Sl−1 ∪ {λl};
5: if Br(Sl) > Br then
6: S1 ← S1 ∪ {λl};
7: else
8: S2 ← S2 ∪ {λl};
9: end if;

10: if Br(Sl) ≥ Br then
11: Λ← Λ\{λr,n | n ∈ Nr};
12: end if;
13: Identify a cloudlet v ∈ V with the largest residual memory resource,

and place λl to cloudlet v.
14: if Mv(Sl) > Mv then
15: S3 ← S3 ∪ {λl};
16: end if;
17: if Mv(Sl) ≥Mv then
18: V← V\{v};
19: end if;
20: l← l + 1;
21: end while;
22: S′ ← argmaxS∈{S1,S2}

∑
λl∈S u(λl); S3 ← S3 ∩ S′;

23: for each S DT λl ∈ S3 do
24: if the assigned cloudlet of λl has no capacity violation by S′ then
25: S3 ← S3\{λl};
26: end if
27: end for
28: S4 ← S′\S3;
29: return argmaxS∈{S3,S4}

∑
λl∈S u(λl);

global privacy budget constraints of requests and memory
capacity constraints on cloudlets, which will be shown in
Lemma 3. We finally choose S3 or S4 with the larger utility as
the final solution to the social-aware S DT placement problem.
The detailed algorithm is shown in Algorithm 1.

A. Algorithm analysis

Lemma 1: Suppose that Algorithm 1 terminates when
all requests run out of global privacy budgets, given a potential
solution S delivered by Algorithm 1, let Sopt be the set of
placed S DTs in the optimal solution to the social-aware S DT
placement problem. Let Soptr be the set of deployed S DTs for
request r by Sopt with Sopt = ∪r∈RSoptr . Similarly, let S be
the potential solution delivered by Algorithm 1 with S =
∪r∈RSr, where Sr is the set of deployed S DTs for request
r. Then, (i) ρ(λl) ≥ ρ(λ∗),∀r ∈ R,∀λl ∈ Sr, ∀λ∗ ∈ Soptr \
Sr; and (ii)

∑
λl∈S u(λ

l) ≥ mmin

mmax
·
∑

λ∗∈Sopt\S u(λ
∗), where

mmax and mmin are the maximum and minimum amounts of
memory resource consumed among all S DTs, respectively.

Proof (i) If Soptr \ Sr = ∅, the lemma follows. Otherwise,
because the S DT identified by Algorithm 1 has the
largest ρ(λl) at each iteration, and the potential solution S
allows resource violations. We thus have ρ(λl) ≥ ρ(λ∗),
∀r ∈ R,∀λl ∈ Sr, ∀λ∗ ∈ Soptr \ Sr.

(ii) Let λ∗
r,max = argmaxλ∗∈Soptr \Srρ(λ

∗), ∀r ∈ R, then∑
λl∈S

u(λl)=
∑
r∈R

∑
λl∈Sr

u(λl)=
∑
r∈R

∑
λl∈Sr

ρ(λl)·m(λl)·σ(λl) (11)



≥
∑
r∈R

∑
λl∈Sr

ρ(λ∗
r,max) ·m(λl) · σ(λl) (12)

≥ mmin ·
∑
r∈R

ρ(λ∗
r,max) ·

∑
λl∈Sr ϵ(λ

l)

Br
(13)

≥ mmin ·
∑
r∈R

ρ(λ∗
r,max) ·

∑
λ∗∈Soptr \Sr ϵ(λ

∗)

Br
(14)

≥ mmin ·
∑
r∈R

∑
λ∗∈Soptr \Sr

ρ(λ∗) · ϵ(λ
∗)

Br
(15)

= mmin ·
∑
r∈R

∑
λ∗∈Soptr \Sr

u(λ∗)

m(λ∗) · σ(λ∗)
· ϵ(λ

∗)

Br

≥ mmin

mmax
·
∑
r∈R

∑
λ∗∈Soptr \Sr

u(λ∗) ≥ mmin

mmax
·

∑
λ∗∈Sopt\S

u(λ∗),

where Eq. (11) holds by the definition of ρ(λl), i.e., Eq. (10).
Ineq. (12) holds by (i) and the definition of λ∗

r,max. Ineq. (13)
holds by Eq. (9). Ineq. (14) holds because Algorithm 1
terminates when the privacy budget consumed of each request
r by S is no less than its global privacy budget Br, while no
request has its global privacy budget violated by the optimal
solution. Ineq. (15) holds due to the definition of λ∗

r,max. ■

Lemma 2: Suppose that Algorithm 1 terminates when
all cloudlets run out of resources. Let S and Sopt be the
potential solution by Algorithm 1 and optimal solution to
the social-aware S DT placement problem, respectively. Then,∑

λl∈S

u(λl) ≥ θmin

θmax

∑
λ∗∈Sopt

u(λ∗), (16)

where θ(λl) = u(λl)
m(λl)

, and θmax and θmin are the maximum
and minimum values of θ(λl), respectively.
Proof∑

λl∈S

u(λl) =
∑
λl∈S

θ(λl) ·m(λl)

≥ θmin ·
∑
λl∈S

m(λl) ≥ θmin ·
∑

λ∗∈Sopt
m(λ∗) (17)

≥ θmin

θmax

∑
λ∗∈Sopt

θ(λ∗) ·m(λ∗) ≥ θmin

θmax

∑
λ∗∈Sopt

u(λ∗)

where Ineq. (17) holds because the memory resource consump-
tion of each cloudlet by S is no less than its capacity, while
the optimal solution causes no resource violation. ■

Lemma 3: The solution delivered by Algorithm 1
for the social-aware S DT placement problem causes no
violation on global privacy budget constraints of requests and
no violation on memory capacity constraints on cloudlets.

Proof Referring to Algorithm 1, if a request r has its global
privacy budget fully utilized or has its global privacy budget
constraint violated (Br(Sl) ≥ Br), the request is no longer to
be considered. Therefore, S1 accommodates at most one S DT
for each request, while S2 accommodates S DTs, causing no
violation on the global privacy budget constraints of requests.

Assuming the privacy budget of a request r is sufficient for
deploying a single S DT of any candidate IoT device in Nr,
we can observe deploying S DTs in either S1 or S2 causes
no violation on privacy budget constraints of requests.

Denote by S′ the set between S1 and S2 with the larger
utility, which is further partitioned into S3 and S4. Similarly,
we can show deploying S DTs in either S3 or S4 causes no
memory capacity violations on cloudlets, and the final solution
(S3 or S4) causes neither violations on global privacy budgets
of requests nor violations on memory capacity of cloudlets. ■

Theorem 2: Given an SEC network G = (V,E), a set N
of IoT devices, a set R of requests, each request r ∈ R has
a candidate set of IoT devices Nr for its S DT deployment.
There is an approximation algorithm, Algorithm 1, for the
social-aware S DT placement problem with an approximation
ratio of 1

4 ·min{ mmin

mmax+mmin
, θmin

θmax
}, and the algorithm takes

O(|R|2 · |N |2max + |R| · |N |max · |V |) time, where mmax and
mmin are the maximum and minimum amounts of memory
resource consumed by any S DT, respectively. θ(λl) = u(λl)

m(λl)
,

θmax and θmin are the maximum and minimum values of
θ(λl), and |N |max is the maximum value of Nr.

Proof We analyze the approximation ratio by distinguishing
two cases. Case 1. Algorithm 1 terminates when all requests
run out of global privacy budgets; and Case 2. Algorithm 1
terminates when all cloudlets run out of resources.

Case 1. By Lemma 1, we have∑
λl∈S

u(λl) ≥ mmin

mmax
·

∑
λ∗∈Sopt\S

u(λ∗). (18)

Then, the value of the optimal solution is∑
λ∗∈Sopt

u(λ∗) ≤
∑
λl∈S

u(λl) +
∑

λ∗∈Sopt\S

u(λ∗)

≤ (1 +
mmax

mmin
) ·

∑
λl∈S

u(λl), by Ineq. (18)

= (
mmax +mmin

mmin
) ·

∑
λl∈S

u(λl). (19)

The final solution value delivered by Algorithm 1 is

max{
∑

λl∈S3

u(λl),
∑

λl∈S4

u(λl)}

≥ 1

2
·max{

∑
λl∈S1

u(λl),
∑

λl∈S2

u(λl)} ≥ 1

4

∑
λl∈S

u(λl)

≥ 1

4
· mmin

mmax +mmin
·

∑
λ∗∈Sopt

u(λ∗), by Ineq. (19). (20)

Case 2. By Lemma 2, we have∑
λl∈S

u(λl) ≥ θmin

θmax

∑
λ∗∈Sopt

u(λ∗). (21)

Similarly, the value of the final solution is

max{
∑

λl∈S3

u(λl),
∑

λl∈S4

u(λl)}



≥ 1

2
·max{

∑
λl∈S1

u(λl),
∑

λl∈S2

u(λl)} ≥ 1

4

∑
λl∈S

u(λl)

≥ 1

4
· θmin

θmax

∑
λ∗∈Sopt

u(λ∗), by Ineq. (21). (22)

Combining Ineq. (20) and (22), we have

max{
∑

λl∈S3

u(λl),
∑

λl∈S4

u(λl)}

≥ 1

4
·min{ mmin

mmax +mmin
,
θmin

θmax
} ·

∑
λ∗∈Sopt

u(λ∗). (23)

The detailed analysis of the time complexity of
Algorithm 1 is omitted due to space limitation. ■

V. PERFORMANCE EVALUATION

A. Experimental settings

Consider an SEC network with the number of APs
(and their co-located cloudlets) ranging from 50 to 250. The
topology of each network is generated by the GT-ITM tool [9].
The memory capacity on each cloudlet is drawn between
6, 400 MB and 10, 240 MB [23]. The amount of the allocated
memory of a container for implementing an S DT ranges from
128 MB to 1, 024 MB [23]. There are 1, 000 IoT devices in
the SEC network, and there are 1, 000 service requests. Each
request is issued by the user of a random IoT device, while
the number of candidate IoT devices of a request ranges from
10 to 20, and the candidate IoT devices are set randomly. The
global privacy budget on each request is set within [20, 40].
The values of the trust ln1,n2 and the interaction intensiveness
λn1,n2 are randomly drawn within [0.1, 0.9]. Parameters τ and
κ in Eq. (1) are set as 0.5 and 10, respectively [6]. The value in
each figure is the mean of 30 different network instances with
the same size. The running time of each algorithm is obtained
by a desktop with an Octa-Core Intel(R) Xeon(R) CPU @
2.20 GHz, 32G RAM. Unless otherwise specified, we adopt
the above-mentioned parameters by default. We evaluated
Algorithm 1, referred to as Alg.1, for the social-aware
S DT placement problem against the following benchmarks.

• Gdy u: it greedily identifies an S DT with the maximum
utility and its request has enough residual privacy budget
for the identified S DT in each iteration. The chosen
S DT then is deployed in a cloudlet with enough residual
memory resource. This procedure continues until no more
S DTs can be identified or deployed in any cloudlet.

• Gdy m: similar to Gdy u. It identifies an S DT with the
smallest memory resource consumption iteratively.

• LP: the relaxed Linear Program (LP) solution by ILP (4),
where xr,n,v is a real number between 0 and 1, and the
solution delivered by LP is an upper bound on the optimal
solution of the social-aware S DT placement problem.

B. Algorithm performance evaluation

We first studied the performance of Alg.1 against Gdy u,
Gdy m and LP for the social-aware S DT placement problem,
with the network size from 50 to 250. Fig. 2 shows the utility
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Fig. 2. Performance of different algorithms.
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Fig. 3. Impact of the number |R| of requests on the performance of Alg.1.

gain and running time of the algorithms. When the network
size is 250, the utility of Alg.1 is 86.9% of that of LP,
which outperforms Gdy u and Gdy m by 21.1% and 26.2%,
respectively. The rationale is that Alg.1 jointly considers the
consumed privacy budget and memory resource for deploying
S DTs to optimize the total utility gain. Fig. 2(b) indicates
that Alg.1 takes more running time than that of Gdy u and
Gdy m, because Alg.1 first obtains a potential solution and
then refines the potential solution to obtain the final solution.

We then investigated the impact of the number |R| of
requests on the performance of Alg.1, by varying the value
of |R| from 500 to 2, 000. Evidenced by Fig. 3(a), the utility
delivered by Alg.1 when |R| = 500 is 37.4% of that by itself
when |R| = 2, 000, assuming that the network size is 250.
Fig. 3(b) demonstrates Alg.1 with 2, 000 requests takes the
longest running time. The justification is that more utilities
can be obtained with a large number of requests, while taking
more time to examine the requests.

We also evaluated the impact of the number |Nr| of
candidate IoT devices for each request r on the performance
of Alg.1, with |Nr| = 10, 15, 20 and 25, respectively. As
seen from Fig. 4(a), the utility obtained by Alg.1 when
|Nr| = 25 is 44.2% of that by itself when |Nr| = 10, assuming
that the network size is 250. This is because of the utility
definition (3), i.e., the utility gain of selecting an IoT device
for a request depends on the total interaction intensiveness of
all the candidate IoT devices of the request. Fig. 4(b) illustrates
a larger value of |Nr| leads to more running time, due to
examining more candidate IoT devices for requests.

We finally evaluated the impact of the global privacy bud-
get Br of each request r on the performance of Alg.1. Fig. 5
plots the performance curves of Alg.1 when Br = 20, 30, 40
and 50, respectively. It is observed from Fig. 5(a) that the
utility by Alg.1 with Br = 20 is 54.3% of that by itself
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r on the performance of Alg.1.
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Fig. 5. Impact of the global privacy budget Br for each request r on the
performance of Alg.1.

with Br = 50, assuming that the network size is 250. This is
because a large global privacy budget can be allocated to select
more IoT devices for providing DT data for each request,
with a larger Br. Also, Alg.1 with Br = 50 achieves the
similar performance by itself with Br = 40. This is justified by
that the memory resource capacity constraint is the bottleneck,
when the global privacy budgets of requests are large. Fig. 5(b)
shows that a larger Br leads to more running time, because of
managing larger global privacy budgets of requests to select
more IoT devices to provide DT data.

VI. CONCLUSION

In this paper, we investigated social-aware service provi-
sioning in DT-assisted SEC environments through DT place-
ments. We first introduced a differential privacy-based feder-
ated learning framework for admitting service requests. Built
upon the framework, we formulated a social-aware S DT
placement problem. We then provided an ILP formulation
for the problem when the problem size is small or medium,
otherwise we developed a performance-guaranteed approxi-
mation algorithm for it. Finally, we evaluated the algorithm
performance via simulations. The simulation results indicate
the proposed algorithm is promising, which outperforms its
counterparts by at least 21.1%.
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